Работа этого генератора несколько отличается от описанного выше генератора на регистрах сдвига. Как видно из рис. 4.27, двоично-десятичный счетчик (возвращаемый в исходное состояние) управляется сигналами, подаваемыми на его тактовый вход, а на его четырех выходах появляются результаты счета импульсов в двоично-десятичном коде. К выходам счетчика обычно подключают семисегментный декодер (серии D147), если результат счета должен отображаться на цифровом индикаторе в семисегментном коде. При использовании десятичного декодера, например серии МН74141, десять выходов которого последовательно подключаются на «массу» в соответствии со счетом тактовых импульсов в схеме счетчика, в качестве индикатора можно применить лампы с цифровой индикацией. Однако этот декодер мало пригоден для сборки подобных генераторов вследствие высокого остаточного напряжения (примерно 2...3 В). По сравнению с этим уровень выходного сигнала микросхемы МН7442, выпускаемой в ЧССР, также декодера «1 из 10» больше подходит для управления работой ТТЛ-схем (несколько десятков мВ при достаточно малом токе), т. е. параметры ее выхода в большой степени соответствуют параметрам схемы D195 (Р195) и к ней могут быть подключены такие же генераторы звуковых частот, получающие команду «Стоп» (на десятый выход микросхемы поступает логический уровень L), как и в предыдущем примере (см, рис. 4.26). Правда, теперь вместо семи звуковых частот с помощью двух контуров управления можно генерировать десять частот с помощью одной схемы. В качестве счетчика может быть использована микросхема МН7490, также чехословацкого производства, или D192. Расположение выводов микросхем дано на рис. 4.28 и 4.29.
Благодаря возможности останова при управлении работой регистра сдвига эту схему управления можно использовать также и для двоично-десятичного счетчика. Причем в качестве точки подачи команд запуска-останова в схеме D195 можно использовать вход МС, а в схеме МН7442 или D192 — вход Reset. Это означает несколько другую комбинацию применяемых микросхем, причем целесообразно объем счетчика использовать не полностью.
При этом каждый цикл счета должен заканчиваться «укороченным», не доведенным до конца. Но он может, как уже было показано, не вызывать звучания, И наконец, для триггера, входящего в схему управления, может быть введен триггерный модуль. Но триггер вообще может не входить в схему, как например при использовании микросхемы МН74154. То есть здесь возможны варианты схемного решения в зависимости от наличия схемных элементов и т, д. Не последнюю роль могут сыграть и многочисленные варианты подобных генераторов, публикуемых в радиолюбительской литературе.
Для 15-тонального генератора необходимы лишь модуль счетчика и декодер «1 из л», если для его сборки выбрать схему D193, обеспечивающую счет от 0 до 15, и декодер «1 из 16» серии МН74154 (рис. 4.30). Это — самый интересный вариант из генераторов этой группы. Его схема представлена на рис. 4.31 (но он может быть применен и в 9-тональном варианте). Но, учитывая различия в форме тактовых импульсов (схема D193, например, срабатывает при скачке потенциала L-H), необходимы также две микросхемы D210 (D110) и одна D200 (D100) для сборки контура управления, тактового генератора и генератора звуковой частоты. Последний аналогичен принятому в семисегментном варианте генератора. Но от микросхемы «Запуск» сигнал запуска теперь не направляется к триггеру и далее не используется для деблокирования тактового импульса, так как этот импульс деблокируется самим тактовым генератором с помощью свободного входа микросхемы. Схема деблокирования тактовых импульсов представляет собой теперь инвертор для них и переходит в состояние покоя с уровнем потенциала L. Эта связь обеспечивает надежность запуска относительно первой звуковой частоты. По сравнению с другими возможностями «усовершенствования» тактового генератора с целью обойтись без микросхемы для инвертора в этом случае продолжительности звучаний всех звуковых частот приняты постоянными (при этом исходное состояние конденсатора тактового генератора наиболее благоприятно). Сопротивления потенциометров R на схеме рис. 4.31 выбираются в зависимости от требуемых звуковых частот в пределах от 0,47 до 10 кОм. Сопротивление катушки громкоговорителя должно составлять 8... 15 Ом вместо нее может быть использован капсюльный микрофон сопротивлением 54 Ом. Напряжение 220 В должно подаваться на трансформатор постоянно.
На рис. 4.31 можно видеть и другие особенности этого генератора по сравнению с описанным ранее. К ним относится клавиша «бесшумного проигрывания» любых тактов в мелодии. При ее нажатии через развязывающие диоды, стоящие перед входом Ег предыдущей схемы деблокирования тактовых импульсов (теперь используемой в качестве инвертора для этих импульсов), эта схема может быть соединена с любым количеством выходов декодера. Если декодированный сигнал достигнет одного из этих выходов, то громкоговоритель остается в режиме молчания.
В мелодийном генераторе по схеме на рис. 4.31 можно использовать следующие полупроводниковые приборы: вместо Р193С (D193C) — К155ИЕ7, Р210С — К155ЛА4, Р200С — К155ЛА2, МН74154 — К155ИДЗ, КР517 — КТ361Г, SF126E — КТ602Г, SAY-12 — Д226В, SZX215.6 — КС156А, 15 развязывающих диодов — Д220 или Д219, КД103, КД105 с различными буквенными индексами.